skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kyriakides, Stelios"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A novel experimental setup is presented that allows for precise control of thermal and mechanical loads, and simultaneous monitoring of the temperature and the full-field deformation of small SMA structures that undergo phase transformations. The facility is used to conduct two experi- ments in which NiTi tubes are taken through a temperature cycle under constant load that leads to phase transformations in the form of helical localization bands that propagate along the specimen. The latent heat of transformation causes a complex interaction with the prescribed load and thermal environment. By changing the rate of the airflow through the environmental chamber it is revealed that the velocities of the transformation fronts depend on the rate at which heat is removed/added by the controlled environment. The experiments are simulated using a new fully coupled thermomechanical extension of the constitutive framework developed by this research group. Key features of the framework include the modeling of the reversible A⇄M transformation through a single surface in the deviatoric stress-temperature space that obeys kinematic hardening; with the transformation strain and entropy as the internal variables gov- erned by an associative flow rule; and the inhomogeneous deformation exhibited in tension being modeled as softening. The tube is analyzed in a finite element coupled static displacement transient temperature analysis, and taken through the cool/heat cycle of the experiment. The temperature-strain response is accurately reproduced with the two transformations initiating at essentially the same temperatures as in the experiment and propagating in similar localized banded manners at similar speeds. Reproduction of the complex behavior observed in the ex- periments requires the calibration of the constitutive model, its discretization, and the modeling of the structure and its boundary conditions to work together to near perfection. The simulation also demonstrated that the heat exchange between the structure and the environment, in the present analysis governed by only by convection, requires further enhancement. 
    more » « less
  2. The shear stress–strain response of an aluminum alloy is measured to a shear strain of the order of one using a pure torsion experiment on a thin-walled tube. The material exhibits plastic anisotropy that is established through a separate set of biaxial experiments on the same tube stock. The results are used to calibrate Hill's quadratic anisotropic yield function. It is shown that because in simple shear the material axes rotate during deformation, this anisotropy progressively reduces the material tangent modulus. A parametric study demonstrates that the stress–strain response extracted from a simple shear test can be influenced significantly by the anisotropy parameters. It is thus concluded that the material axes rotation inherent to simple shear tests must be included in the analysis of such experiments when the material exhibits anisotropy. 
    more » « less